WWW.PACRIM.AUSIMM.COM

# **PACRIM** 21019

#### AUCKLAND 3-5 APRIL 2019

#pacrim2019

#### MINERAL SYSTEMS OF THE PACIFIC RIM



GSA and AIG members get registration discount
Fieldtrips / workshops open to all - no need to attend conference
5 DAY FT4 - MACQUARIE; ARC or RIFT? – Blevin and Glen

# EXPLORATION MODELS -YOU CAN FLIRT WITH A MODEL ... ... YOU SHOULDN'T MARRY ONE



With thanks to

Aurizon ASRA Mining

for financial support

Ken Maiden SMEDG 28 February 2019

#### Ore face, Klein Aub mine, Namibia

Production (1966 - 1987): 5.5 Mt at 2.0 % Cu & 50 g/t Ag







Kojeka prospect Kalahari Copperbelt Central Namibia

#### Bob Ilchik getting excited

Copper-bearing phyllite

## Kalahari Belt Evolution, Stage 1 - Rifting



### Evolution, Stage 2 - Basin Subsidence



sediments

## Klein Aub Deposit - Observations

- 1. Adjacent to a basement high
- 2. Stratigraphy -
  - Basalt & red beds (conglomerate & quartzite)
  - Overlain by pyritic quartzite & black slate
- 3. Copper concentrated in black slate bands
- 4. Elevated copper over many kilometres of strike



## Klein Aub - Syngenetic Model (1981)



- 1. Copper leached from hinterland
- 2. Transported by streams
- 3. Deposited in reducing environments in playa lakes

This is basically the model developed for the Zambian Copperbelt in the 1960s

#### Syngenetic Model - Variations



#### Syngenetic Model - Variations





# Mangula Copper Paint

H<sub>2</sub>S reduces molybdate (Mo<sup>4+</sup>) to molybdenum blue (Mo<sup>3+</sup> or Mo<sup>2+</sup>)

Chalcocite in silt & fine sand bands NOT in fine-grained (clay) bands



# Hi ! My name is Cupric. I am a Copper Ion





# Chlorina & I hang out together (It's a complex relationship)

## But then Sulphura comes on the scene





## We settle down together ...

Just Married



... and live happily ever after (until a greedy mining company digs us up)

### Syngenetic Model



### Syngenetic Model - Deposition



(I should show them holding hands with sulphura)

### Syngenetic Model - Compaction



Copper should be in fine-grained bands ...



# Diagenetic Model - Basin Compaction



- Copper leached from basalt & red beds
- Driven towards
   basin margins
- Precipitates in sulphur-bearing reduced strata

## Syngenetic vs Diagenetic Models

Does this make a difference to the exploration approach? NOT MUCH -

- Onlap onto basement high
- Reduced strata above red beds
- Mapping & geochemistry to locate copper-bearing zones
- I.P. lines over geochem anomalies
- Drill to intersect copper beds down dip



# **Exploration Planning**

We need to define the target concept We need to convince the Board We need an Exploration Permit We need a program and a budget And we need a team



#### Field Reconnaissance

#### 1970s drill hole (Aquitane)

#### Previous drilling

- Widely-spaced holes to 300m depth
- Drilled to intersect
   copper beds down dip
   → Low grade copper
  - (generally <1% Cu)





#### Diagenetic Models - Unconsolidated Sediment



Fluid moves freely

# Partly Consolidated Sediment



## **Consolidated Sediment**



No fluid movement through consolidated rocks ...



### ... except where openings exist or are created





# Ore Face, Klein Aub Mine

Chalcocite in veins & brittle fractures cutting across cleavage

Chalcocite in silt & fine

sand laminae



Polished slab of ore Field of view ~12 cm Chalcocite in fracture fillings & quartz veins

More than 50% of the copper is in structures which cut across bedding
Polished section Field of view ~2 mm Pale blue mineral = chalcocite

#### Ore face, Klein Aub mine, Namibia

#### Cross-cutting veins

#### Bedding-parallel vein

# Geological Map, Klein Aub (Handley, 1965)







# Structural History

D₁ Syn-sedimentary extension
D₂ compression (Damaran) ~ 530 Ma
→ Large-scale folds, regional cleavage

 $D_3$  transpression (late-Damaran)

- $\rightarrow$  Reverse motion on Klein Aub Fault
- → Thrusts, faults, drag folds near Klein Aub Fault
- All explained by dextral wrench / flower structure on Klein Aub Fault

Mine exposure of Klein Aub Fault



## Late Epigenetic Model



## Late Epigenetic Model: Possible Ore Niches



# During deformation ...

... fluid can be pumped through permeable channelways

# So we find copper concentrated in ...





## ... brittle fractures, ... veins





#### ... dilatant sites



#### ... and replacing reactive minerals

# A Klein Aub- Style Target ?

- Underground mine
- Narrow ore bands 1 2 m
- Production: 5.5 Mt at 2.0 % Cu
   & 50 g/t Ag
- Is another Klein Aub a viable target ?
- NO



## Regional Target: Kagas Member



• Copper occurrences in limestone & dark phyllite



Georgette Geologiste

has some bright ideas



# A Couple of Ideas

Target -

- Structural thickening (e.g. in hinges of folds)
- Shallow open-cuttable deposit ( $\rightarrow$  lower mineable grade)
- Multiple closely-spaced bands (→ bulk-mineable)
- Oxide copper (→ SX-EW operation)







#### Soil Geochemistry



50m line spacing, 10m sample spacing



### Klein Aub Area - Exploration

- Interpretation of remote sensing imagery
- Regional soil geochemical traverses
- 20 targets defined for detailed follow-up
  - ground magnetics, mapping & soil geochemistry
- 47 shallow RC holes on priority targets









## **Exploration Results 2012**

- Most holes intersected target zone at 10 30m depth
- Narrow intersections of low grade copper
- Best intersection 8m at 0.41% Cu
- Highest assay 3m at 1.1% Cu
- NOT VERY EXCITING



## Company Strategy 2012

- "In summary, the company's quite extensive exploration to date has been unsuccessful in identifying potential for a substantial near-surface copper deposit"
- "Our Kalahari Copperbelt strategy needs to be reinvigorated"
- The Board decided not to continue funding the project
- Exploration permit not renewed



## Did We Miss Something ?

On the positive side -

- There is an enormous amount of copper
  - copper-bearing beds extend for hundreds of kilometres
- In the Botswana segment of the Kalahari Copperbelt, there are several deposits +50 Mt at ~2% Cu with Ag credits

#### What else could we have done ?

#### Lunch time

# Are we relying too much on soil geochemistry ?

Time to sit & ponder again

# Weathering of Copper Sulphide Deposits



Mapping & Sampling, Klein Aub Area Is soil geochemistry effective in an area like this?

## A closer look at copper-bearing beds ...

Chalcocite-bearing phyllite

In detail, the copper-bearing phyllite is more strongly deformed than adjacent rocks

#### These look like sheared & altered rocks

Are these beds? Or are they bedding-parallel shear zones?

#### Chalcocite lenticles in carbonate

Are these carbonate beds? Or are they zones of carbonate alteration?

## **Possible Alteration**

#### Likely alteration minerals -

muscovite quartz

carbonate chlorite

albite ?

If it is alteration, how extensive is it ?

We don't know - it

hasn't been mapped and there's been no petrology



## Klein Aub - Regional Geology





Small hill of outcropping oxide copper Is it resistant to erosion due to silica alteration ?
Possible enhanced thickness & metal concentration in a fold

### Possible Structural Control



### Is This Something to Get Excited About ?



### Kalahari Copperbelt - Mineralisation Styles

- Disseminated grains mainly in silty & fine sandy laminae; possibly replacing anhydrite and/or carbonate
- In cleavage-parallel lenticles
- In brittle fractures
- In quartz-carbonate veins
- In zones of tectonic breccia

How do we find a model that accounts for these different styles of mineralisation ?

### Kalahari Copperbelt - Conceptual Models

- Copper emplaced during basin compaction and partially remobilised during deformation & metamorphism
- Early (syngenetic or diagenetic) copper significantly upgraded by later deformation-related hydrothermal events
- Epigenetic Copper pumped up faults & shear zones during Damaran (Cambrian) deformation events



### **Conceptual Models**

Do conceptual models matter ?

Do they change our exploration approach ?



### Exploration models are used ...



.. to interpret controls on ore localisation ..

## .. and to design exploration programs

### **Conceptual Models**



It's the difference between a carefully-thought-out exploration program, based on understanding controls on ore localisation ...

### Mineral exploration in theory

... and just charging ahead

### Mineral exploration in practice

### Conceptual Models - Problem

Assume a detailed knowledge of the ore-forming process BUT ... Our understanding might be wrong or incomplete



### Exploration Targets -Syngenetic & Diagenetic Models

- $\rightarrow$  focus on stratigraphy
- $\rightarrow$  especially reduced beds near a basement high
- $\rightarrow$  identify targets based on geochemistry
- $\rightarrow$  firm up targets with I.P. lines
- $\rightarrow$  drill to intersect copper beds down-dip

#### **RESULT:**

- Lots of low grade copper intersections
- No significant ore discoveries

### Exploration Targets - Epigenetic Models

- Yes, we need reactive strata
- Yes, we need lots of geochemistry
- Regional interpretation to identify possible controlling structures
- Detailed mapping to:
  (a) Understand geological structure
  (b) Understand the interplay between structure & stratigraphy
  (c) Identify zones of alteration
- Deep geophysics to identify drilling targets
- Lots of drilling

### HASN'T YET BEEN DONE

### Stratigraphic Controls - Exploration Heritage

Because of the former focus on stratigraphic controls (the 'favourable horizon') -

- Drilling tested along strike and down-dip; not down-structure
- Copper occurrences not in the 'favourable horizon' were not adequately tested
- Copper in veins was considered as 'minor remobilisation' rather than potentially part of the halo to a larger structurally-controlled deposit

### $\rightarrow$ Many targets remain to be explored

### Implications of Epigenetic Models

- Much previous exploration poorly directed
- Many copper occurrences ignored or under-explored
- Expect deposits associated with alteration & brecciation
- May be a range of deposit styles, with differing
  - host rock types
  - geometry
  - alteration assemblages
  - structural relationships to host rocks



### You can flirt with a model ...



### ... in fact, you should flirt with lots of models...



(The technical term is Multiple Working Hypotheses)



# ... but you shouldn't marry one!





Thanks to Aurizon ASRA Mining for financial support